人工智能时代的编程方式改变了,只需要改一行代码,就可以把识别率从53%提高到96%。改一行代码调参数,然后等待会不会有更好结果。好像亲手把思考的能力奉送给了机器。
import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
toPitImage = ToPILImage() # 可以把Tensor转成Image,方便可视化
# 参考:https://www.cs.toronto.edu/~kriz/cifar.html
# 第一次运行程序torchvision会自动下载CIFAR-10数据集,原始尺寸是32x32
# 大约100M,需花费一定的时间,
# 如果已经下载有CIFAR-10,可通过root参数指定
# 定义对数据的预处理
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train():
# 训练集
trainset = tv.datasets.CIFAR10(
root='/home/hgneng/code/PyTorch-book/data/',
train=True,
download=True,
transform=transform)
trainloader = t.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2)
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
(data, label) = trainset[100]
print(classes[label])
# (data + 1) / 2是为了还原被归一化的数据
# image = toPitImage((data + 1) / 2)
# image.show()
dataiter = iter(trainloader)
images, labels = next(dataiter) # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
# image = toPitImage(tv.utils.make_grid((images+1)/2))
# image.show()
t.set_num_threads(8)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 打印log信息
# loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f' \
% (epoch+1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
def test():
# 测试集
testset = tv.datasets.CIFAR10(
'/home/hgneng/code/PyTorch-book/data/',
train=False,
download=True,
transform=transform)
testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2)
dataiter = iter(testloader)
images, labels = next(dataiter) # 一个batch返回4张图片
print('实际的label: ', ' '.join(\
'%08s'%classes[labels[j]] for j in range(4)))
# image = toPitImage(tv.utils.make_grid(images / 2 - 0.5))
# image.show()
# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)
print('预测结果: ', ' '.join('%5s'\
% classes[predicted[j]] for j in range(4)))
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数
# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = t.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))
# 原书的模型识别率53%
# net = Net()
# resnet50 在2015年的比赛中准确率为76%
# net = tv.models.resnet34() # 准确率39%
# net = tv.models.resnet18() # 正确率50%
# https://pytorch.org/hub/pytorch_vision_googlenet/
# net = t.hub.load('pytorch/vision:v0.10.0', 'googlenet', pretrained=True) # 正确率85%
# net.eval()
# https://pytorch.org/vision/main/models/generated/torchvision.models.googlenet.html
# net = tv.models.googlenet(pretrained=True)
# net.eval()
# https://pytorch.org/vision/main/models/efficientnet.html?highlight=efficientnet
# 正确率94%,可重现
# net = tv.models.efficientnet_b1(pretrained=True)
# net.eval()
# 不行,不知道怎么用
# https://pytorch.org/hub/nvidia_deeplearningexamples_efficientnet/
# net = t.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', pretrained=True)
# net.eval()
# 不行,lost nan不知道怎么用
# net = tv.models.efficientnet_v2_s(pretrained=True)
# net.eval()
# 目前业界对CIFAR10数据集的最高正确率是96.53%。该准确率是由使用一种称为EfficientNet的深度学习模型在CIFAR10数据集上实现的。
# 正确率96%,但运行起来比b1慢很多,光测试就要花17分钟
net = tv.models.efficientnet_b6(pretrained=True)
net.eval()
# net = t.load('efficientnetb6.pth') # 173M
#print(net)
train()
test()
# t.save(net, 'efficientnetv2s.pth')
评论