可汗学院的教程:https://www.khanacademy.org/math/multivariable-calculus,这是目前找到最好的教程,有视频、文本和练习,学习曲线非常平缓。(AP是面向高中生的,讲得会不够深入。MIT开放出来的视频是几十年的,质量太差,看着难受。网易公开课里清华的废话比较多,东西比较旧。可汗学院的鼠标视频看着也是很难受的,像素太低,等号大于号有时都分不清。)
矢量与矩阵(vectors and matrics)
点乘(dot product)就像是计算合力,点乘的结果是标量。
叉乘(cross product)的方向要用右手定则,值是面积。有点像计算电磁感应。叉乘的结果是矢量。叉乘只适用于三维矢量。
行列式(determinant)这个名词的翻译不是特别直观,它反映了坐标经过一系列转换后的一个缩放系数,绝对值大于1是放大了,小于1是缩小了,负数表示坐标翻转了。
行列式和叉乘的关系如下:
偏微分和梯度(Partial derivative and gradient)
magnitude:暂时翻译为长度,用两层绝对值符号表示,是向量各分量值的平方和再开方。
This symbol
方向导数(Directional derivatives):偏导向量“点乘”方向单位向量,得到一个标量,物理意义是该方向上的坡度。
评论